Identifying File Types in the TREC-Polar-DD
Dataset Using Byte-Signature Methods

Nithin Krishna, Ajay Kumar, Zack Winoker
March 4, 2016

Abstract

We use byte-frequency based statistical approaches to identify file
types in the TREC-Polar-DD Dataset. We study the efficacy of these
techniques and combine them with clustering methods to enhance their
utility. We also study the effect that file size has on these approaches.
The limitations of magic byte classification are explored for the text-plain
type and a method for automated new file type detection is discussed.

1 Introduction

File type identification is an essential step in many file forensics and security ap-
plications [10]. Traditional methods for identifying file types include reading file
extensions (ex: .doc) and magic byte approaches. However, these approaches
can be maliciously spoofed or otherwise fail [1]. In response to these shortcom-
ings, more robust statistical approaches have been developed [11].

In this paper, we investigate the utility of byte frequency signature meth-
ods developed by McDaniel and Heydari [1] in classifying the types of files in
the TREC Polar Data set [2]. This large data set is comprised of information
pertaining to climate change in polar regions and is largely unstructured. Pre-
viously, Apache Tika has been used to identify a large number of the file types
in this set [2]. However, many of them remain classified as octect-stream or
text-plain, which are effectively catch-all MIME types. In this study, we im-
plement McDaniel’s BFA, BFC, BFCC, and FHT methods [1] and use them to
classify types in the TREC set. We compare the efficacy of each method for
classifying types and for identifying new file types. Furthermore, we address
how byte frequency signatures may vary across different file sizes. We also use
k-means clustering to attempt to identify file types within the catch-all MIME
types octet-stream and text-plain [12].

In analyzing the results, we discuss shortcomings of the magic byte approach
and suggest a more robust solution for new file type identification. Finally, our
results are presented using D3 visualizations hosted at [6].



2 Methods

2.1 The TREC Dataset

The TREC-Polar-DD data set is about 65GB and 1,741,530 files in size. In
order to speed up the download, the data set was downloaded over 20 threads
which took approximately 18 hours for the download to complete. The Amazon
S3 bucket containing the data was mounted using RioF'S which is a user space
file system. The common crawl folder structure was traversed in a Depth First
manner to retrieve files which were then inputted to Tika version 1.11 in order
to determine the MIME type of the file. The files with same MIME types were
grouped into folders and the resulting type distribution is displayed at [8]. In
the same link, we also show the MIME diversity before classifying using Tika
1.11 (see figure 1)

\

Figure 1: Charts of the MIME Diversity with the octet-stream type highlighted.
Left, from the previous classification efforts. Right, after running Tika 1.11

Type A Meta = D1-Count = D2-Count = Difference =

application-atom+xmi 2984 2913 -7

application-aitexm 3 0 5813 5813
application-ditasxml; format=concept ass 319 -2
application-epub+zip 36 30 -6
application-fits = 2 2 0
application-gzip 2060 1732 a8
application-java-vm = 1 1 )
application-msword 244 2 -242
application-octet-stream 211687 147023 64664
application-ogg 2% o -2

application-paf 44658 44556 -102

Figure 2: A subset of our MIME Diversity table at [8]. Data includes whether
more or fewer files have been classified as a given type after using Tika 1.11.
Also included is whether a type is new, deprecated, or unchanged.

After the initial classification was made, we removed empty files from the
octet-stream folder. We found that 97.5% of these files were empty. Then we
computed an average byte frequency signature for each of the types identified by
Tika (see figure 3 for an example). For types with greater than 5 files, we used
75% of the available files. Otherwise, all files were used to create the signature.

In computing each signature, we used the companding function z'/® with
b=1.5. This was used instead of either A-law or mu-law companding functions
since it is much faster to compute and is a relatively accurate approximation of
both[3].

During this step, we also investigated the possibility that byte signatures
varied over file sizes within any given file type. Traditional approaches to file



012345678091 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31

@imageipeg

2673,
o

sy PR A

o £ 00 150 20 255

Figure 3: The average byte frequency signature computed for the MIME type
image-jpeg.

type detection do not consider file size because they assume that this variation
does not exist. Varying file sizes are typically handled by normalizing signa-
tures by the largest byte frequency [1]. We tested the validity of this method
as follows. First, we used k-means clustering with a Euclidean distance metric
to sort each file type into 5 size-based buckets. Then an average byte frequency
signature was generated for each bucket in each type. The size-specific signa-
tures were then compared visually. Results are displayed at [9] (see figure 4 for
an example).

File Size Variaion For sppiication-atomexrmi

” I ’.‘ﬂ }f |
’ A\“ l‘ “w:«

|
|

A M

Figure 4: Left: Byte frequency signatures for application-atom+xml files. Each
curve is for a different range of file sizes, where the ranges were determined
using k-means clustering. Right: Clusters found by k-means for this type.

We computed the BFC for all file types originally identified in the TREC
dataset. The average correlation was computed for each type using 75% of the
available files for that type. A newly computed signature was generated from
the remaining 25%. We also computed BFCC on the BFA signatures computed
for every given type. The results are available at [15,16].

We computed FHT matrices with headers and trailers of size 8, 16, and 32
bytes. Our 4 byte results are found by taking the first 4 bytes of the 8 byte
results.

We attempted to identify further file types within the catch-all MIME types
octet-stream and text-plain using k-means clustering. 5 clusters were generated



and a Euclidean distance metric was used. Average byte frequency fingerprints
for each cluster were then generated and compared as in our BFA step. We also
re-classified octet-stream and text-plain using version 1.12 of Tika in order to
compare our multi-cluster BFA results for these catch-all MIME types.

During our analysis, we also paid special attention to the byte range 97-122,
which represents English-language characters. Files that are text-based should
have a relatively higher frequency of these bytes in their signatures (see figure
5). We used this observation to help identify text-heavy files in catch-all types.

abcdefghijkimnopgrstuvwxyz . e .

Figure 5: Left: Letter frequency for the English language. Right: Byte frequen-
cies in the range 97-122 for a variety of text-based files. Note the similarity in
both plots.

3 Results

We first discovered 5 new types just by running Tika 1.11 on the dataset.
These were: text-x-matlab, text-x-csrc, application-zlib, application-x-grib, and
application-dif+xml. A large number of files were also reclassified. In particular,
64,664 files were removed from the octet-stream type, 27,540 from text-plain,
and 11,720 from application-xml. 10,660 files were added to text-html and 1,362
to text-matlab. The remainder of the results are presented in the D3 visualiza-
tion at [8]. Tika was able to make these new classifications due to updates in its
MIME-type knowledge base. For example, magic bytes were added for text-x-
matlab, which allowed Tika to identify matlab files. Changes to magic-priorities
of other types resulted in further reclassification.

3.1 File Sizes

For the majority of file types, we found that file size had little to no effect on the
character of the corresponding fingerprint (see figure 4). In a small number of
cases, there appeared to be a size-specific variation. However, in most of these
cases it appears that these variations were due to small sample sizes within
the given size range. Therefore, we conclude it is sufficient to normalize byte
frequencies to account for file size. Note that this assumption was used without
testing in previous studies or was discarded as incorrect [1,12]. Note also that
our conclusion agrees with similar conclusions that were made in [13] using
significantly less data.



3.2 FHT

For most file types, the FHT sparse matrices were well defined and would be
useful for comparisons against files of unknown type. For example, the FHT
visualizations for types application-msword and application-zip are quite dis-
tinctive (see figure 6 for an example).

@sopicaton-msworc-s @ appicaton-msworc-s @ Renge Merkers

Figure 6: The 8-byte FHT matrix for the file type application-msword. Note
that this matrix is sparse, which is necessary if we are to use it for file type and
magic byte identification.

Using the results from the 4-byte analysis, we were able to identify magic
bytes for 4 file types: CAB, NETCDF, QUICKTIME, and FITS. We added
these magic bytes to Tika (see [4]).

However, the sparse matrices for types spanning multiple subtypes show-
cased virtually no defining characteristics. For example, consider the FHT vi-
sualizations for text-plain (figure 7) . There is clearly large variability in the
FHT matrix for the files in this type, rendering it useless for figuring out magic
bytes.

otet
2 9 9 9 ¢ @
¢ @

P

Figure 7: The 8-byte FHT matrix for the file type text-plain. Note that this
matrix is not sparse, so we can’t use it for identifying magic bytes or file types.

3.3 Multiple clusters

Our multi-cluster analysis of octet-stream revealed that we had classified a num-
ber of text and ms-word files under this category. This is evident from the peak
in byte values ranging from 97 to 122, which are letters in the English alphabet.
We see this peak in the signature for clusters ¢l and c4, indicating that there
are at least two text-based types or collections of types within our octet-stream
classification. We compared the octet-stream signature to application-msword’s
and found further evidence of similarity.



@aopicatonmsword applicaton-octetst.

QL_LJV\NV\JLNV\QIVWAJLPUN M«M. B

Byt Value

Figure 8: The application-octet-stream and application-msword types have very
similar byte frequency signatures.

There also was a significant similarity between cluster c5’s signature and
application-quicktime’s. We therefore predicted that the octet stream category
also contained quicktime or some other audio/video files. To verify this, we
ran Tika version 1.12 on our octet-stream files. Of the 3792 octet-stream files,
2833 were ms-office files of some type and 6 were audio-vorbis (the breakdown
is specified in table 1), indicating that our prediction was correct.

Octet-stream subtype Number of files
application-msword 714
application-vnd.ms-excel 504
application-vnd.ms-powerpoint 49
application-x-mspublisher 2
application-x-tika-msoffice 1564
audio-vorbis 6
application-x-tika-ooxml-protected 1
application-octet-stream 952
Total MS-Office 2833
Total 3792

Table 1: Tika 1.12 classified our octet-stream files into the above types. Note
the large percentage of MS office files and the presence of audio files, both of
which match our predictions from clustering and signature methods.

We then re-ran the clustering algorithm on the remaining 952 application-
octet-stream files. The results revealed an apparently new cluster with a unique
byte frequency signature, with a notable peak at byte number 136 (see the
curve "aonb” at [14]). The fact that repeated application of k-means and sig-
nature generation revealed this indicates that these methods are very useful for
exploratory analysis of file types.

Our multi-cluster analysis of text-plain indiciated that there are a large
number of Javascript, CSS, and malformed HTML files. This was confirmed
via manual examination of the files. This examination also made it clear that
text-plain subtype classification is actually a much richer problem than the
corresponding problem in octet-stream. While we can use FHT analysis to



identify magic bytes of octet-stream subtypes, that approach is not possible for
text-plain (see figure 7). Note that by nature, Javascript, CSS, and HTML files
that do not start with "DOCTYPE...” or "THTML...” do not have any magic
bytes or distinguishing features. Tika will therefore never be able to identify
these files using its current magic byte based methods. However, our multi-
cluster results give us a definitive classification of these types. See figures 9, 10,
and 11 for more information. These findings are corroborated by our BFC and
BFCC results [15,16].

Figure 9: Text-plain clusters tpl and tp4 have a high occurrence of numbers
and characters common to the CSS vocabulary.

s
w3 0saTe9sormosezr

BBBBBB

Figure 10: Text-plain cluster tp3 has a high occurrence of the characters '<’
and ">’ (bytes 60 and 62), which are overwhelmingly common in HTML.

o
g
£
£
E
.
]

Figure 11: Text-plain clusters tp2 and tp5 have a high occurrence of the char-
acters '(’, ’)’, ’{’, and ’}’ (bytes 40,41,123 and 125), which are very common in
Javascript when defining functions.

Based on these clustering/signature findings, we suggest that new file types
can be systematically identified by the following process. After classifying files



using existing signatures or magic byte methods, use k-means to cluster and gen-
erate signatures for catch-all types such as octet-stream and text-plain. Then
manually investigate these clusters and assign each of them a type. Alterna-
tively, one could automatically assign each of them a type ’tika-type-n’, where n
is an index. Reclassify all files using these additional signatures. Repeat until no
new significant clusters are found or until distinct magic-byte patterns appear
in the catch-all subtypes.

It is also worth noting that our BFA step takes about 2 hours to run on a
typical laptop computer for all 1.7 million files. We were therefore able to create
signatures for all identified MIME types. We believe that this efficiency is due
to our use of the approximate companding function z'/® and a parallelized 2-
phase Map-Reduce-like computation. Our extensions to Tika should therefore
successfully scale to larger data sets (see [5]).

4 Conclusions and Future Work

We found that FHT analysis is useful for identifying magic bytes of previously-
identified file types. We also confirmed that file sizes have little to no effect on
their corresponding byte frequency signatures.

Our work also indicated that there are two central issues that can use further
work here: the ”text-plain” problem and the ”octet-stream” problem.

The text-plain problem, namely that magic byte and FHT approaches can-
not effectively classify many subtypes of text-plain, is very important for future
classification efforts. A significant portion of files on the internet are code and
other text-plain subtypes. Hence there is a need for a much more robust mech-
anism for content-detection in both information-retrieval and security applica-
tions. Signature based approaches like ours and that in [10] should be used to
supplement existing magic byte approaches in Tika. We believe [17] is a step in
the right direction.

The ”octet-stream” question asks how we can automate identification of
magic byte or other patterns in a class of unclassified types like octet-stream. We
suggested a simple recursive solution using a combination of signature generation
and k-means clustering. Once this process stops producing new signatures and
clusters or once most clusters have distinctive magic bytes, a user can manually
examine the results, look for magic bytes and new file types, and then add them
to an existing MIME-types database. We believe this solution would be a highly
useful addition to Tika.

5 Appendix and Further Notes

1. Our code can be found at [5].
2. Code and a readme for the visualizations can be found at [18].
3. The homepage for the visualization is at [6].

4. We implemented pairwise Jaccard Similarity for Tika Similarity. The pull
request can be found at [7].



© ® N o

10.
11.

12.

13.

We found that the Python interface made Apache Tika very easy to use.
Our code was easy to scale and parallelize.

Note that any figures omitted from this report can be found on the visu-
alization’s web app [6].

We would like to contribute our results to polar.usc.edu.
We have also opened the following issues for Tika:

(a) https://issues.apache.org/jira/browse/TIKA-1891
(b) https://issues.apache.org/jira/browse/TTKA-1888
(c) https://issues.apache.org/jira/browse/TTKA-1889
(d) https://issues.apache.org/jira/browse/TTKA-1891

Bibliography

Mcdaniel, M., and M.h. Heydari. ”Content Based File Type Detection
Algorithms.” 36th Annual Hawaii International Conference on System Sci-
ences, 2003. Proceedings of the (2003). Web.

https://github.com/chrismattmann/trec-dd-polar/

McDaniel, Mason. ”An Algorithm for Content-Based Automated File
Type Recognition.” Http://www.forensicswiki.org/. Dec. 2001. Web.
ihttp://www.forensicswiki.org/w/images/f/f9/Mcdaniel01.pdf;.

https://github.com/nithinkrishna/tika/commit/86579ec5644cabfacd7d945423b824d8ca7b0c57

Readme is at https://github.com/nithinkrishna/file-content-analyzer
D3 visualization is at http://104.236.190.155/#/
https://github.com/chrismattmann /tika-similarity /pull /56
http://104.236.190.155/# /compare/before /now.
http://104.236.190.155 /4 /size

” A New Approach to Content-based File Type Detection.” Web. http://arxiv.org/pdf/1002.3174.pdf

Ahmed, Irfan, Kyung-Suk Lhee, Hyunjung Shin, and Manpyo Hong. ” Content-

based File-type Identification Using Cosine Similarity and a Divide-and-
Conquer Approach.” IETE Tech Rev IETE Technical Review 27.6 (2010):
465. Web.

Li, Wei-Jen, Ke Wang, S.j. Stolfo, and B. Herzog. ”Fileprints: Identifying
File Types by N-gram Analysis.” Proceedings from the Sixth Annual IEEE
Systems, Man and Cybernetics (SMC) Information Assurance Workshop,
2005. Web.

Zhang, Like, and Gregory B. White. ” An Approach to Detect Executable
Content for Anomaly Based Network Intrusion Detection.” 2007 IEEE In-
ternational Parallel and Distributed Processing Symposium (2007). Web.



14.
15.
16.
17.
18.

http://104.236.190.155/# /visualize /bfa/aonl:aon2:aon3:aon4:aonb
http://104.236.190.155/# /signatures/bfc
http://104.236.190.155/# /signatures/bfcc
https://issues.apache.org/jira/browse/ TIKA-1582

https://github.com/nithinkrishna/content-visualization

10



